软考
APP下载

直方图平均数计算案例

直方图是一种用于表示数据分布情况的图形,它将数据分组并用矩形条表示每个分组的频率或数量。直方图的平均数是对数据集的平均值的一种估计,它被定义为所有数据值所在的直方图中心的平均值。在本文中,我们将介绍如何计算直方图平均数并提供一个案例。

计算直方图平均数

要计算直方图平均数,首先需要创建数据集的直方图。这可以通过将数据分组并绘制一个条形图来实现。然后,找到每个直方图条形的中心点并计算它们的加权平均值。

例如,假设我们有以下数据集:1, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9。我们可以将其分为以下组:1-2, 3-4, 5-6, 7-8, 9-10。然后,我们可以绘制以下直方图:

![histogram](https://i.imgur.com/aXHuwiL.png)

在这个直方图中,每个条形的中心点是该分组的中点。因此,第一个组的中心点为1.5,第二个组的中心点为3.5,依此类推。接下来,我们需要计算每个中心点的权重,即每个分组中数据的个数。在这个例子中,第一个组有1个数据点,第二个组有3个数据点,第三个组有3个数据点,第四个组有2个数据点,最后一个组有1个数据点。然后我们计算每个中心点的加权平均值:

((1.5 * 1) + (3.5 * 3) + (5.5 * 3) + (7.5 * 2) + (9.5 * 1)) / (1 + 3 + 3 + 2+ 1) = 5.0

因此,该数据集的直方图平均数为5.0。

案例分析

假设我们有一家电商公司,想要了解其销售的产品价格分布情况。为了实现这一目标,我们可以采集该公司在过去一年内销售的产品价格数据,并绘制其直方图。

下图是所得数据集的直方图:

![histogram2](https://i.imgur.com/4LeWvIW.png)

我们可以看到,大部分的产品价格集中在100-200元之间。我们可以使用上文介绍的方法计算该直方图的平均数。首先,我们需要确定每个分组的中心点。在这个例子中,我们可以假设每个分组的宽度为20元,并对价格进行分组。然后,我们可以计算每个分组的中心点:

100+10=110

120+10=130

140+10=150

160+10=170

180+10=190

200+10=210

接下来,我们需要确定每个分组的权重,即销售营收占比。在这里,我们可以使用该价格段的销售额占比作为权重来计算。例如,第一个分组的权重可以计算如下:

100元产品的总销售金额/ 一年内所有产品的总销售金额

假设100元产品的销售总额为1000元,一年内所有产品的销售总额为10000元,则第一个分组的权重为0.1。

最后,我们可以使用上文中介绍的公式计算该直方图的平均数:

(110*0.1) + (130*0.2) + (150*0.3) + (170*0.25) + (190*0.1) + (210*0.05) = 159元

因此,该公司的产品在过去一年内的平均售价为159元。

结论

直方图平均数是估计数据集平均值的一种方法。通过将数据集分为组并计算每个组的权重,可以计算直方图的平均数。在实际应用中,直方图平均数可用于评估数据集的分布情况,从而为企业决策提供数据支持。

备考资料 免费领取:系统集成项目管理工程师报考指南+考情分析+思维导图等 立即下载
真题演练 精准解析历年真题,助你高效备考! 立即做题
相关阅读
系统集成项目管理工程师题库